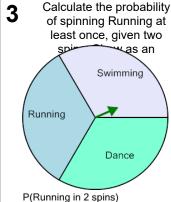
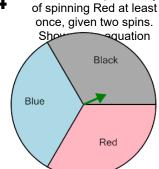


mobius

Probability - Spinner, Two Spins, Either Answer, To Equation

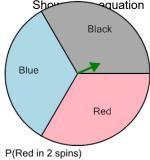


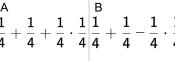
$$\begin{vmatrix} \frac{1}{3} + \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} & \frac{1}{5} - \frac{5}{5} \cdot \frac{3}{4} \end{vmatrix}$$


2	of spinn		,
	once, giv		
	Show		ation
		8	
	6	×	
		7	
D/0	in O amina)		
P(8	in 2 spins)		

Calculate the probability

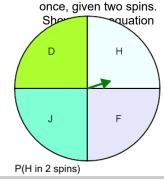
$\frac{1}{3}$ +	1/3 -	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$ +	$-\frac{1}{3} +$	$-\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{5}$	- 3	3	5 5	7	_ 3	3	3
5	3	3	5	3	_ 1	_ •	2
Ę	,	`	1				


$$\frac{\stackrel{\mathsf{A}}{\overset{1}{3}} + \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} \stackrel{\mathsf{B}}{\overset{\mathsf{B}}{3}} + \frac{0}{2} \cdot \frac{1}{1}}{\stackrel{\mathsf{B}}{\overset{\mathsf{B}}{3}} + \frac{0}{2} \cdot \frac{1}{1}}$$


$ \mathbf{\hat{1}} $	3	2	5	3	5
2 +	<u>4</u> .	4	2	$\overline{1}$.	5

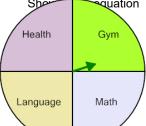


$$\left| \frac{2}{2} + \frac{3}{2} \cdot \frac{7}{1} \right|^{\frac{1}{3}} + \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3}$$



7	6	7 1	1	1	1
2	$\frac{1}{2}$	$\overline{5}$ $\overline{5}$	+ 3	⁺ 3	3
_					

$$\frac{1}{4} + \frac{1}{4} - \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$$

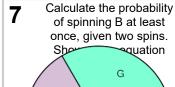


Calculate the probability

of spinning H at least

5

$$\frac{\cancel{4}}{2} - \frac{3}{5} \cdot \frac{6}{4}$$



Calculate the probability

of spinning J at least

P(Gym in 2 spins)

$$\left| \frac{\hat{1}}{2} + \frac{2}{4} \cdot \frac{1}{2} \right| \frac{\hat{1}}{4} - \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{\frac{1}{3} + \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3}}{\frac{1}{3} + \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3}}$$

$$\frac{\frac{2}{3} - \frac{1}{1} \cdot \frac{5}{3}}{\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3}}$$

$$\left| \frac{1}{3} + \frac{3}{5} \cdot \frac{2}{4} \right|^{\frac{1}{3}} + \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3}$$

$$\begin{bmatrix} \frac{c}{1} & \frac{1}{3} + \frac{1}{3} + \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{3} & \frac{3}{1} \end{bmatrix}$$

$$\left|\frac{5}{3} - \frac{0}{4} \cdot \frac{1}{1}\right|$$

P(B in 2 spins)