

mobius

Pythagorean Equation from Values - Either Missing Length (Radical)

1	Find the radical (square root) for the
•	value of 'a' in this equation

$$a^2 + 16 = 49$$

$$a^2 + 4 = 64$$

Α	$a = \sqrt{163}$	В	$a=\sqrt{114}$	A	$a = \sqrt{60}$	В	$a=\sqrt{124}$
С	$a=\sqrt{131}$	D	$a = \sqrt{33}$	С	$a=\sqrt{68}$	D	$a=\sqrt{188}$

4

2

Find the radical (square root) for the value of 'b' in this equation

$$25 + b^2 = 36$$

$$4 + b^2 = 36$$

6

$$25 + b^2 = 49$$

$$a^2 + 9 = 49$$

Α	$b=\sqrt{172}$	В	$b=\sqrt{24}$	Α	$a=\sqrt{107}$	В	$a=\sqrt{89}$
С	$b = \sqrt{73}$			С	$a=\sqrt{40}$	D	$a = \sqrt{138}$
				E	$a=\sqrt{58}$		

8

$$16 + b^2 = 25$$

$$4 + b^2 = 16$$

$$b = \sqrt{9}b = \sqrt{59}b = \sqrt{34}b = \sqrt{34}b = \sqrt{66}b = \sqrt{12}b = \sqrt{28}b = \sqrt{36}b = \sqrt{44}$$