

mobius

Trigonometry - Side Lengths from Variables and Identity

Select the definition of this side in terms of Cosine	$\begin{vmatrix} A & B \\ cos imes opp \end{vmatrix} \begin{vmatrix} B & Cos imes a \end{vmatrix}$	$dj^{f 2}$ Select the definition of this side in terms of Cosine	$egin{array}{c c} {}^{ extsf{A}} & \dfrac{cos}{adj} \end{array} egin{array}{c} {}^{ extsf{B}} & \dfrac{opp}{cos} \end{array}$
What is hyp? adj	$egin{array}{c c} adj & egin{array}{c} cos \ \hline cos \end{array} \end{array}$	What is adj? adj	$\begin{vmatrix} c \\ cos imes hyp \end{vmatrix}^{ extstyle extstyle } rac{cos}{opp}$
$cos = rac{aaj}{hyp}$	$\frac{1}{hyp} = \frac{cos}{cos}$	$cos = rac{aaj}{hyp}$	$cos imes opp$ $ egin{array}{c} hyp \ cos \end{array} $
Select the definition of this side in terms of Tangent	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	this side in terms of Sine	$egin{array}{c c} {\sf A} & rac{adj}{sin} \end{array} egin{array}{c c} {\sf B} & rac{sin}{hyp} \end{array}$
What is adj?		$What\ is \ opp?$	
$tan = \frac{dP}{adj}$	$egin{array}{c c} rac{tan}{opp} & ext{f} & tan imes h \end{array}$	$sin=rac{11}{hyp}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
Select the definition of this side in terms of Sine	$\begin{vmatrix} \mathtt{sin} imes adj \end{vmatrix}^{\mathtt{B}} \; rac{sin}{opp}$	6 Select the definition of this side in terms of Tangent	$\left egin{array}{c} rac{hyp}{tan} \end{array} ight ^{\mathtt{B}} rac{tan}{adj} \ \end{array} ight $
What is hyp?	$egin{array}{c c} opp & egin{array}{c} sin imes o \end{array}$	ODD	$egin{bmatrix} ^{ extsf{c}} tan imes adj & rac{adj}{tan} & \end{array}$
$sin = rac{opp}{hyp}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$-tan = rac{arr}{adj}$	tan imes opp tan imes hyp