+2

Function Transformations (Definition) - Double Transformation (Values) to Definition

Level 1

The topics in this unit focus on understanding how transformations change functions and the effects of stretch, compression, reflection, and moving the vertex. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

Function Transformations (Definition) - Double Transformation (Values) to Definition Worksheet

Mobius Math Academy logo
Function Transformations (Definition) - Double Transformation (Values...
1
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = - 0.25f(x)
a A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Vertical compression: }0.25\\
b A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical stretch: }0.25\\
c A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical compression: }0.25\\
2
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = 4f(x)+ 2
a A LaTex expression showing \text{Vertical compression: }4\\\text{Shift up: }2\\
b A LaTex expression showing \text{Horizontal stretch: }4\\\text{Shift up: }2\\
c A LaTex expression showing \text{Vertical stretch: }4\\\text{Shift up: }2\\
3
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = - f(0.25x)
a A LaTex expression showing \text{Reflect in X-Axis}\\\text{Horizontal compression: }0.25\\
b A LaTex expression showing \text{Reflect in X-Axis}\\\text{Horizontal stretch: }0.25\\
c A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Horizontal stretch: }0.25\\
4
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = 2f(x- 4)
a A LaTex expression showing \text{Horizontal stretch: }2\\\text{Shift right: }4\\
b A LaTex expression showing \text{Vertical compression: }2\\\text{Shift right: }4\\
c A LaTex expression showing \text{Vertical stretch: }2\\\text{Shift right: }4\\
5
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = f(-x)- 3
a A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Shift left: }3\\
b A LaTex expression showing \text{Reflect in X-Axis}\\\text{Shift down: }3\\
c A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Shift down: }3\\
6
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = 0.5f(x+ 4)
a A LaTex expression showing \text{Vertical compression: }0.5\\\text{Shift left: }4\\
b A LaTex expression showing \text{Vertical stretch: }0.5\\\text{Shift left: }4\\
c A LaTex expression showing \text{Horizontal compression: }0.5\\\text{Shift left: }4\\
7
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = 0.2f(0.25x)
a A LaTex expression showing \text{Vertical stretch: }0.2\\\text{Horizontal stretch: }0.25\\
b A LaTex expression showing \text{Vertical compression: }0.2\\\text{Horizontal stretch: }0.25\\
c A LaTex expression showing \text{Vertical stretch: }0.25\\\text{Horizontal compression: }0.2\\
8
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = - f(0.33x)
a A LaTex expression showing \text{Reflect in X-Axis}\\\text{Horizontal stretch: }0.33\\
b A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Horizontal stretch: }0.33\\
c A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical stretch: }0.33\\