+2

Function Transformations (Definition) - Double Transformation (Variables) to Definition

Level 1

The topics in this unit focus on understanding how transformations change functions and the effects of stretch, compression, reflection, and moving the vertex. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

Function Transformations (Definition) - Double Transformation (Variables) to Definition Worksheet

Mobius Math Academy logo
Function Transformations (Definition) - Double Transformation (Variab...
1
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = p times f(x+ t)\\p<1
a A LaTex expression showing \text{Horizontal compression: }p\\\text{Shift left: }t\\
b A LaTex expression showing \text{Vertical stretch: }p\\\text{Shift left: }t\\
c A LaTex expression showing \text{Vertical compression: }p\\\text{Shift left: }t\\
2
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = w times f(x+ r)\\w>1
a A LaTex expression showing \text{Vertical stretch: }w\\\text{Shift left: }r\\
b A LaTex expression showing \text{Vertical stretch: }w\\\text{Shift down: }r\\
c A LaTex expression showing \text{Horizontal stretch: }w\\\text{Shift left: }r\\
3
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = - z times f(x)\\z<1
a A LaTex expression showing \text{Reflect in X-Axis}\\\text{Horizontal compression: }z\\
b A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Vertical compression: }z\\
c A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical compression: }z\\
4
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = - w times f(x)\\w<1
a A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Vertical compression: }w\\
b A LaTex expression showing \text{Reflect in X-Axis}\\\text{Horizontal compression: }w\\
c A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical compression: }w\\
5
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = f(q times x+ r)\\q<1
a A LaTex expression showing \text{Horizontal compression: }q\\\text{Shift left: }r\\
b A LaTex expression showing \text{Horizontal stretch: }q\\\text{Shift left: }r\\
c A LaTex expression showing \text{Vertical stretch: }q\\\text{Shift left: }r\\
6
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = m times f(-x)\\m>1
a A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Vertical compression: }m\\
b A LaTex expression showing \text{Reflect in Y-Axis}\\\text{Vertical stretch: }m\\
c A LaTex expression showing \text{Reflect in X-Axis}\\\text{Vertical stretch: }m\\
7
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = f(x+ n)- p
a A LaTex expression showing \text{Shift left: }n\\\text{Shift down: }p\\
b A LaTex expression showing \text{Shift right: }n\\\text{Shift down: }p\\
c A LaTex expression showing \text{Shift left: }p\\\text{Shift down: }n\\
8
What does this transformation produce in f(x)?
A LaTex expression showing g(x) = f(w times x)- m\\w<1
a A LaTex expression showing \text{Vertical stretch: }w\\\text{Shift down: }m\\
b A LaTex expression showing \text{Horizontal stretch: }w\\\text{Shift down: }m\\
c A LaTex expression showing \text{Horizontal stretch: }w\\\text{Shift left: }m\\