+2

Sinusoidal Function Parameters (1 Param) - Function to Parameters

Level 1

The topics in this unit focus on understanding how transformations change functions and the effects of stretch, compression, reflection, and moving the vertex. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

Sinusoidal Function Parameters (1 Param) - Function to Parameters Worksheet

Mobius Math Academy logo
Sinusoidal Function Parameters (1 Param) - Function to Parameters
1
What is the vertical shift of this sinusoidal function?
A LaTex expression showing f(x) = 3 over 2 \sin (8 over 11 Pi x+5 over 2 Pi )+3 over 11
a A LaTex expression showing \text{Amplitude } = 3 over 2 \\\text{Period } = 22 Pi over 8 \\\text{Vertical Shift } = 3 over 11 \\
b A LaTex expression showing \text{Amplitude } = 3 over 2 \\\text{Period } = 22 over 3 \\\text{Vertical Shift } = 8 over 11 \\
c A LaTex expression showing \text{Amplitude } = 8 over 11 \\\text{Period } = 4 over 3 \\\text{Vertical Shift } = 3 over 11 \\
d A LaTex expression showing \text{Amplitude } = 3 over 2 \\\text{Period } = 22 over 8 \\\text{Vertical Shift } = 3 over 11 \\
2
What is the vertical shift of this sinusoidal function?
A LaTex expression showing f(x) = -7 over 5 \sin (3 over 7 x+4 over 7 )+5 over 7
a A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 14 over 3 \\\text{Vertical Shift } = 5 over 7 \\
b A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 14 Pi over 3 \\\text{Vertical Shift } = 5 over 7 \\
c A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 14 Pi over 5 \\\text{Vertical Shift } = 3 over 7 \\
d A LaTex expression showing \text{Amplitude } = 5 over 7 \\\text{Period } = 14 Pi over 3 \\\text{Vertical Shift } = -7 over 5 \\
3
What is the period of this sinusoidal function?
A LaTex expression showing f(x) = -6 over 5 \sin (7 over 5 Pi x+8 over 7 )+2 over 5
a A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 10 over 6 \\
b A LaTex expression showing \text{Amplitude } = 6 over 5 \\\text{Period } = 10 over 7 \\
c A LaTex expression showing \text{Amplitude } = 6 over 5 \\\text{Period } = 10 Pi over 7 \\
4
What is the period of this sinusoidal function?
A LaTex expression showing f(x) = -6 over 3 \sin (5 over 7 Pi x+3 over 7 Pi )+4 over 7
a A LaTex expression showing \text{Amplitude } = 6 over 3 \\\text{Period } = 14 over 5 \\
b A LaTex expression showing \text{Amplitude } = 6 over 3 \\\text{Period } = 14 Pi over 5 \\
c A LaTex expression showing \text{Amplitude } = 5 over 7 \\\text{Period } = 6 over 6 \\
5
What is the period of this sinusoidal function?
A LaTex expression showing f(x) = -7 over 11 \cos (4 over 2 x+4 over 3 )+4 over 11
a A LaTex expression showing \text{Amplitude } = 7 over 11 \\\text{Period } = 4 Pi over 4 \\
b A LaTex expression showing \text{Amplitude } = 4 over 2 \\\text{Period } = 22 Pi over 7 \\
c A LaTex expression showing \text{Amplitude } = 7 over 11 \\\text{Period } = 4 over 4 \\
6
What is the period of this sinusoidal function?
A LaTex expression showing f(x) = -7 over 5 \cos (8 over 5 Pi x+6 over 2 Pi )+7 over 11
a A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 10 Pi over 8 \\
b A LaTex expression showing \text{Amplitude } = 7 over 5 \\\text{Period } = 10 over 8 \\
7
What is the amplitude of this sinusoidal function?
A LaTex expression showing f(x) = 6 over 5 \cos (3 over 2 x+8 over 11 Pi )+3 over 11
a A LaTex expression showing \text{Amplitude } = 3 over 2 \\\text{Period } = 10 Pi over 6 \\
b A LaTex expression showing \text{Amplitude } = 6 over 5 \\\text{Period } = 4 Pi over 3 \\
c A LaTex expression showing \text{Amplitude } = 6 over 5 \\\text{Period } = 4 over 3 \\
8
What is the period of this sinusoidal function?
A LaTex expression showing f(x) = -2 over 3 \cos (6 over 7 Pi x+7 over 2 Pi )+2 over 11
a A LaTex expression showing \text{Amplitude } = 2 over 3 \\\text{Period } = 14 over 6 \\
b A LaTex expression showing \text{Amplitude } = 2 over 3 \\\text{Period } = 14 Pi over 6 \\